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Noise-induced transport of Brownian particles with consideration for their mass

P. S. Landa
Department of Physics, Lomonosov Moscow State University, 119899 Moscow, Russia

~Received 6 March 1998!

The noise-induced transport of Brownian particles with regard to their mass is considered. The results of
approximate analytical calculations for the averaged particle flux in periodic ratchetlike potentials are pre-
sented. It is shown that with increase in mass the reversal of flux is possible. An analogy between noise-
induced transport and well known in mechanics vibrational transport is discussed.@S1063-651X~98!10607-4#

PACS number~s!: 05.40.1j, 87.10.1e, 05.60.1w, 82.80.2d
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INTRODUCTION

In recent years phenomena of noise-induced transpo
Brownian particles has attracted the considerable interes
many scientists, for the most part in the context of differe
biological and chemical problems~see, for example, Refs
@1–6#!. A physical experiment demonstrating the possibil
of such transport in a ratchetlike potential field is describ
in Ref. @7#.

Systems in which noise-induced transport occurs are o
called stochastic ratchets in analogy to the mechanical de
‘‘ratchet-and-pawl’’ described and considered by Feynm
@8#. Feynman showed that in the case of thermodynam
equilibrium the ratchet on average is at rest as it must
cause of the second law of thermodynamics.

It should be noted that similar phenomena were also
cussed prior to Feynman lectures@9–15#. In Refs.@11,12# it
was shown that in the simplest electrical rectifier consist
of condenser and diode the condenser can be charged
out an external source, only at the sacrifice of thermal fl
tuations. This paradoxical result cast some doubt on the
sibility of the second thermodynamics law as applied to
phenomenon considered@14#. As far back as 1950, Brillouin
@10# showed, considering diode as a nonlinear resistor,
for the feasibility of the second thermodynamics law a sh
of the voltage-current characteristic of the nonlinear resis
must be taken into account. Stratonovich@15# established, on
a certain model of the diode, that such a shift does occur
calculated it. With this shift the mean value of the volta
drop across the condenser and the mean current in the c
vanish.

We note that in works concerning noise-induced transp
authors allege that a necessary condition for existence
directional motion of Brownian particles is the presence o
spatioperiodic potential with a certain asymmetry. Accord
to them the periodicity is required to permanently extr
work from applied fluctuations, thus transforming noise in
directed motion. The examples considered in the first sec
demonstrate that this condition is not necessary.

In the last few years much attention has been concentr
on the problem associated with the separation of particle
different mass or size. In this connection studies of differ
models giving flux reversals as the system parame
change@16–19# are very important. Below it is shown tha
under certain conditions flux reversal is possible with
creasing particle mass.
PRE 581063-651X/98/58~2!/1325~9!/$15.00
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As a rule, the consideration of noise-induced transpor
restricted to the so-called overdamped case when the mo
of a Brownian particle is described by a first order differe
tial equation of the form

ẋ52 f ~x!1z~x,t !1j~ t !, ~1!

where f (x) is a periodic function ofx possessing a certai
asymmetry,z(x,t) is a random process with zero mea
value, andj(t) is white noise imitating thermal fluctuations
The processz(x,t) can be either given or described by oth
equations.

It is usual to distinguish two types of ratchet devices@4–
6,20,21#: ~1! z(x,t) is independent ofx ~fluctuating force!
and~2! z(x,t) depends onx ~fluctuating barrier!. In its turn,
the latter can be also divided into two classes:~a!
z(x,t)5 f (x)x(t) @4# and~b! z(x,t) is a random function of
t andx @21#.

We restrict ourselves to the first type of ratchet devic
but take into account particle mass. In addition, we show t
there is a certain analogy between noise-induced and vi
tional transport that is well known in mechanical engineer
@22#.

I. AN ELECTRICAL RECTIFIER AND VIBRATIONAL
TRANSPORT

First of all let us consider an electrical rectifier shown
Fig. 1. Taking into account the shift of the diode curren
voltage characteristic we can write the following equation
the voltage drop across the diodeV:

V̇5F~V2V0!2V/t1j~ t !, ~2!

whereCF(V2V0) is the current flowing through the diode
t5RC is the relaxation time, andj(t) is white noise of
intensityK.

For simplicity we setF(v) in the form

FIG. 1. Schematic image of an electrical rectifier.
1325 © 1998 The American Physical Society



ue

ob
ity

,
v

he

al
an

t
if-

ng

o

at-

e

n

It

cess
red
at

he
ss
etail

1326 PRE 58P. S. LANDA
F~v !5H 2a1v for v.0,

2a2v for v,0.

The value ofV0 can be calculated by using the techniq
suggested by Stratonovich@23#. In so doing we find

V05AK0t~11a1t!~11a2t!

t

~a12a2!t

A11a1t1A11a2t
, ~3!

whereK0 is the intensity of thermal fluctuations.
Solving the corresponding Fokker-Planck equation we

tain the following expression for the stationary probabil
density:

w~V!5CH expS 2
~11a1t!~V2V0!2

Kt D for V.V0

expS 2
~11a2t!~V2V0!2

K
t D for V,V0 ,

~4!

where

C5
2A~11a1t!~11a2t!

pKt~A11a1t1A11a1t!

is the normalization constant.
If the intensity of noisej(t) is greater than or equal toK0

then

^V&5At

p
~AK2AK0!~a22a1!t

A~11a1t!~11a2t!

A11a1t1A11a2t
.

~5!

It follows that ^V& is equal to zero forK5K0 and not equal
to zero forK.K0. The sign of̂ V& is determined by the sign
of the differencea22a1. So, as would be expected, forK
.K0 anda1Þa2 we obtain the rectification of fluctuations
i.e., directed motion of electrons caused by noise. It is e
dent that this phenomenon is similar to a stochastic ratc
-

-

i-
t.

Let us now consider the simplest example of vibration
transport and show that it is akin to electron transport in
electrical rectifier. Let a body of massm lies on a horizontal
plane vibrating in the direction of an axisx. We assume tha
a force of dry friction between the body and plane has d
ferent values forẋ.0 andẋ,0. This is possible if the sur-
face of the plane is rough. Then we can write the followi
equation for the body motion:

ẏ52 f ~y!1F~ t !, ~6!

wherey5 ẋ, F(t) is proportional to the inertial force due t
vibration of the plane, and

f ~y!5H a1 for y.0

2a2 for y,0,
~7!

a1,2 are the friction factors.
In mechanics it is usual to consider harmonically vibr

ing plane, i.e.,F(t)5B sinvt. In this case the availability or
lack of transport are determined by the value ofB and the
difference betweena1 anda2. If B,mina1,2 then the body,
being fort50 at rest, remains immobile for allt. In the case
of a1,B,a2 the body moves towards the right during th
time lapse betweent11nT and t21nT, where t1
5(1/v)arcsin(a1 /B), t2 is determined by the equatio
(B/v)(cosvt12cosvt2)5a1(t22t1), n is an integer andT
52p/v; during the remainder of time the body is at rest.
is evident thatȳ51/T*0

Ty(t) dt.0. So, the body moves on
average, though no constant forces act upon it; in the pro
the motion occurs in the direction of less resistance offe
by the friction force. In the case of the most interest, th
B.maxa1,2, the body moves towards both the right and t
left, but in the average it moves in the direction of the le
resistance as before. Let us consider this case in more d
in the time interval 0<t<T. A solution of Eq.~6!, in view of
Eq. ~7!, is
y~ t !55
y~0!1a2t1

B

v
~12cosvt ! for 0<t<t1

2a1~ t2t1!1
B

v
~cosvt12cosvt ! for t1<t<t2

a2~ t2t2!1
B

v
~cosvt22cosvt ! for t2<t<T,

~8!
wherey(0), t1, andt2 are determined by the following equa
tions:

y~0!1a2t11
B

v
~12cosvt1!50,

2a1~ t22t1!1
B

v
~cosvt12cosvt2!50, ~9!
a2~T2t2!1
B

v
~cosvt221!2y~0!50.

An example of the plot ofy(t) is given in Fig. 2.
It follows from Eqs.~8!,~9! that

ȳ5
1

v
AB22

p2a1
2a2

2

~a11a2!2 S sin
pa2

a11a2
D 22

cos
pa1

a11a2
.

~10!
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It is easily seen that this expression is valid forB>B0, where

B05
pa1a2

a11a2
S sin

pa2

a11a2
D 21

.

We can see from Eq.~10! that, as one would expect,ȳ is
equal to zero fora15a2, positive fora1,a2, and negative
for a1.a2.

Let us consider further the case of random vibration. W
put F(t)5j(t), wherej(t) is sufficiently wide-band noise o
intensityK with zero mean value. In this case we can use
Fokker-Planck equation associated with the Langevin eq
tion ~6!. The stationary solution of this equation satisfyin
the condition for the probability flux to be zero is

w~y!5C expS 2

KE0

y

f ~y8!dy8D , ~11!

where the constantC is determined from the normalizatio
condition. It is

C5F E
2`

`

expS 2

KE0

y

f ~y8!dy8D dyG21

. ~12!

Using the expressions~11!,~12! we can find the mean valu
of y:

^w~y!&5E
2`

`

y expS 2

KE0

y

f ~y8!dy8D
3dyF E

2`

`

expS 2

KE0

y

f ~y8!dy8D dyG21

. ~13!

If f (y) is described by the expression~7! then

^y&5
K

2a1a2
~a22a1!. ~14!

So, in this case we obtain the same result as for harm
vibration: fora15a2 the body is on average at rest, where
for a1Þa2 the body moves on average in the direction of t
less resistance. This result is similar to the rectification
fluctuations. However, there is a dissimilarity from the ca
of harmonic vibration: in the case of harmonic vibration t

FIG. 2. The plot ofy(t) for a155.024,a252p, B/v52, and
v52p for values of parameterst150.0971137, t250.65267,

y(0)520.970434,ȳ'0.2461,B0 /v'1.4175.
e

e
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s
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effect is of threshold character, whereas in the case of
dom vibration the transport can occur for the fluctuation
tensity as small as is wished.

II. TRANSPORT OF A MASSIVE BROWNIAN PARTICLE
IN A VISCOUS MEDIUM WITH SAWTOOTH

POTENTIAL UNDER THE ACTION OF REGULAR
AND RANDOM FORCES

Let us consider the motion of a Brownian particle in
viscous medium described by the following equation:

m ẍ1 ẋ1 f ~x!5z~ t !1j~ t !, ~15!

where m5m/b, m is the particle mass,b is the viscous
friction factor, f (x) is a periodic function ofx, z(t) is a
function of time which can be both regular and random, a
j(t) is white noise of intensityK imitating thermal fluctua-
tions. For definiteness, we set

f ~x!5H a1 for nL,x,nL1x1

2a2 for nL2x2,x,nL,
~16!

where n50, 61, 62, . . . , L5x11x2 is the period of the
function f (x). We note that such a form of the functionf (x)
corresponds to the sawtooth potentialU(x) shown in Fig. 3.

The functionf (x) can be expanded into the Fourier seri

f ~x!5 (
n51

`
1

npS ~a11a2!sin
2pnx

L
2a1sin

2pn~x2x1!

L

2a2sin
2pn~x1x2!

L D . ~17!

We note that for any finite number of the series termsf (x) is
a differentiable function. The shape of the functionf (x) and
the potentialU(x) in the approximation of four terms of th
series~17! is shown in Fig. 4.

The problem is to calculate the particle velocityẋ aver-
aged over both statistical ensemble and time.

This problem can be solved analytically only in the ca
that m is sufficiently small. As will be seen from the subs
quent results, the condition of smallness is

FIG. 3. An example of the sawtooth potential.
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m
a1a2

K
!1. ~18!

At the condition ~18! we can use the approximate on
dimensional Fokker-Planck equation for the probability de
sity of the variablex derived by Stratonovich@24#:

]w

]t
5

]

]xF @11m f 8~x!#S @ f ~x!2z~ t !#w~x,t !1
K

2

]

]xD G ,
~19!

wheref 8(x)5d f(x)/dx. Although the termf 8(x) enters into
Eq. ~19!, it disappears in the expression forw(x,z); therefore
we can takef (x) in the form of Eq.~16!. For m50 Eq.~19!
is the exact Fokker-Planck equation corresponding to
Langevin equation~15!.

Becausef (x) is a periodic function ofx, the probability
density w(x,z) is also a periodic function ofx. The latter
enables Eq.~19! to be solved only on the interval from
2x2 to x1. If the functionz(t) varies sufficiently slowly, we
can use so-called quasistationary approximation for solv
Eq. ~19!, i.e., neglect the term]w/]t. In this approximation
we obtain from Eq.~19! the following equation forw(x,z):

G~ t !52@11m f 8~x!#S @ f ~x!2z~ t !#w1
K

2

]w

]x D , ~20!

whereG(t) is the probability flux in the direction of the axi
x in the instantt.

Let us show that the particle velocityẋ averaged over both
statistical ensembles is proportional to the probability fl
G(t):

^ẋ&5G~ t !L, ~21!

FIG. 4. The shape of the functionf (x) and the potentialU(x) in
the approximation of four terms of the series~17!.
-

e

g

where the symbol̂ & denotes averaging over ensemble,L
5x11x25U(a11a2)/a1a2 is the period of the function
f (x).

First of all let us note that Eq.~19! is equivalent to the
following Langevin equation@24#:

ẋ5@11m f 8~x!#@z~ t !2 f ~x!#1m
K

2
f 9~x!

1A@11m f 8~x!#j~ t !. ~22!

Averaging Eq.~22! with regard to the correlation betweenx
andj(t) @24#, we obtain

^ẋ&5E
2x2

x1 S @11m f 8~x!#@z~ t !2 f ~x!#

1m
K

2
f 9~x! Dw~x,t !dx. ~23!

Taking into account Eq.~20!, we can rewrite the integrand in
~23! as

S @11m f 8~x!#@z~ t !2 f ~x!#1m
K

2
f 9~x! Dw~x,t !

5G~ t !1
K

2

]

]x
$@11m f 8~x!#w~x,t !%.

Substituting this expression in~23! and using the periodicity
conditions for the functionsw(x,t) and f (x) we obtain the
formula ~21!. Averaging further~21! over time we find

^ẋ&5G~ t !L, ~24!

where

Ḡ5 lim
T→`

E
0

T

G~ t !dt.

Thus, the transport of particles is determined by the m
value of the probability fluxG(t).

A solution of Eq.~20! is

w~x,t !52m
G~ t ! f ~x!

K
1expS 2

2@U~x!2zx#

K D
3FC~ t !2

2G~ t !

K E
0

xS 112m
f ~x8!@ f ~x8!2z#

K D
3expS 2@U~x8!2zx8#

K Ddx8G , ~25!

whereU(x)5*0
x f (x8) dx8 is the potential.

For f (x) described by the expression~16! we obtain
w~x,t !5H G~ t !

z2a1
1S C~ t !2

G~ t !

z2a1
12m

G~ t !a1

K DexpS 2~z2a1!x

K D for 0,x,x1

G~ t !

z1a2
1S C~ t !2

G~ t !

z1a2
22m

G~ t !a2

K DexpS 2~z1a2!x

K D for 2x2,x,0,

~26!

whereC(t) is an arbitrary function oft.



PRE 58 1329NOISE-INDUCED TRANSPORT OF BROWNIAN . . .
From the periodicity condition of the functionw(x,t) we find the relationship betweenC(t) andG(t):

C~ t !FexpS 2U0z

Ka1
D2expS 2

2U0z

Ka2
D G5G~ t !F S 1

z2a1
2

2ma1

K DexpS 2U0z

Ka1
D2S 1

z1a2
1

2ma2

K D
3expS 2

2U0z

Ka2
D2

a11a2

~z2a1!~z1a2!
expS 2U0

K D G . ~27!

Taking into account Eq.~27!, from the normalization condition we determineG:

G~ t !5U0FexpS 2U0z

Ka1
D2expS 2

2U0z

Ka2
D G S 1

a1~z2a1!
1

1

a2~z1a2! D1
K~a11a2!2e22U0 /K

2~z2a1!2~z1a2!2 FexpS 2U0

K D2expS 2
2U0z

Ka2
D G

3FexpS 2U0

K D2expS 2U0z

Ka1
D G1m

a11a2

~z2a1!~z1a2!H a1expS 2U0z

Ka1
D1a2expS 2

2U0z

Ka2
D2~a11a2!

3expF2U0

K S z

a1
2

z

a2
21D G2FexpS 2U0z

Ka1
D2expS 2

2U0z

Ka2
D GzJ . ~28!
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It follows that in the case thatz(t)[0 the probability flux is
absent, i.e., the transport is impossible.

A. Transport of a Brownian particle under the action
of small periodic force

In this item we consider the case whenz(t)5B0

1B sinvt with B0 , B!a1,2 Ka1,2/U0. ExpandingG(z) in
powers ofz we obtain

G~z!'
U0a1a2z

K2~a11a2!sinh2~U0 /K !
F11

a22a1

a1a2

3S U0
2

K2sinh2~U0 /K !
1

U0

K tanh~U0 /K !
22D z~ t !G

1m
U0a1

2a2
2exp~2U0 /K !z

K3~a11a2!sinh3~U0 /K !
F11

a22a1

a1a2

3S 2U0
2

K2sinh2~U0 /K !
1

U0

K tanh~U0 /K !
23D z~ t !G .

~29!

If B50, B0Þ0, i.e., in addition tof (x) a constant force act
upon the particle, then

^ẋ&̄'S U0
2

K2sinh2~U0 /K1!
1m

U0
2a1a2exp~2U0 /K !

K3sinh3~U0 /K !
DB0 ,

~30!

i.e., the particle moves in the direction of the constant for
~We note that in the absence of fluctuations, whenK→0,

^ẋ&̄→0, i.e., the transport of the particle is impossible.!
In another specific case, whenB050, BÞ0, we obtain
.

^ẋ&̄'F U0
2~a22a1!

K2a1a2sinh2~U0 /K !
S U0

2

K2sinh2~U0 /K !

1
U0

K tanh~U0 /K !
22D 1m

U0
2~a22a1!exp~2U0 /K !

K3sinh3~U0 /K !

3S 2U0
2

K2sinh2~U0 /K !
1

U0

K tanh~U0 /K !
23D GB2

2
. ~31!

It is easy to verify that in the absence of fluctuations t
transport of the particle cannot occur, as for the case o
constant force.

As follows from Eq.~31!, for m50, B050 the particle
can move on average only in the direction of the slower r
of the potential change. However, formÞ0 and/orB0Þ0 the
direction of motion can change, i.e., the flux reversal c

occur. The dependencies of 2^ ẋ&̄/B2 on U0 /K for m50,
ma1a2 /U050.15,ma1a2 /U050.3 are shown in Fig. 5 both
for B050 ~a! and forB0a1 /B2520.00125~b!. We see that
the flux reversal occurs at a moderately small value ofU0 /K
(U0 /K less than or of order 1!.

It is evident that the flux reversal can be used for t
separation of particles of different masses. Examples of

dependencies of̂ ẋ&̄/B2 on ma1a2 /U0 for U0 /K50.6,
U0 /K50.7, U0 /K50.8 are illustrated in Fig. 6 forB050
~a! and B0a1 /B2520.00125~b!. We see that in the pres
ence of a constant force the separation of particles can
more effective. It should be noted that, as with noise-indu
transport, the noise-induced separation of particles of dif
ent size or~and! mass is akin to vibrational separation@22#.

The results obtained can be explained in the followi
manner. The noise-induced transport occurs if fluctuatio
transitions through the potential barrier are more frequen
one direction than in another. Because the probability of
transition through a certain potential barrier depends only
the height of this barrier and intensity of fluctuations, t



rc
he
in

e
a
e

em
s
k-
. I
of

on
ar-

y
he

f a

e

ty

1330 PRE 58P. S. LANDA
transport is impossible in the absence of an additional fo
z(t). This force results in the fact that the probabilities of t
transition through the potential barrier become different
different directions.

B. Transport of a Brownian particle under the action
of a correlated random force

The problem of fluctuational transport of an overdamp
Brownian particle in a viscous medium induced by therm
noise and a correlated random force that is a Markov proc
was studied by Doering, Horsthemke, and Riordan@20# and
Bier @4#. However, concrete results were obtained by th
only for dichotomous and so-called ‘‘kangaroo’’ processe

A similar problem was also studied by Millonas and Dy
man @17# but for the case where thermal noise is absent
the approximation of sufficiently small correlation time

FIG. 5. The dependencies of 2^ẋ&̄/B2 on U0 /K for L51, a1

51.25, a255, m50 ~curve 1!, ma1a2 /U050.15 ~curve 2!,
ma1a2 /U050.3 ~curve 3!, B050 ~a!, andB0a1520.00125B2 ~b!.
e

d
l
ss

.

n

the random force they found nonzero current depending
the shape of the force spectral density. The inclusion of p
ticle mass was performed by Bartussek, Ha¨nggi, Lindner,
and Schimansky-Geier@19#, but the problem was tackled b
numerically solving either initial stochastic equations or t
corresponding Fokker-Planck equation.

First of all let us consider the case when the motion o
Brownian particle is described by Eq.~15!, where the corre-
lated random forcez(t) is described by the equation

z̈1gż1v0
2z5v0gj1~ t !. ~32!

We assume thatj1(t) is white noise with zero mean valu
and intensity equal toK1. We assume thatj1(t) is noncor-
related withj(t). It is easily shown that the spectral densi
and correlation function of the processz(t) are

FIG. 6. The dependencies of^ẋ&̄/B2 on ma1a2 /U0 for U0 /K
50.6 ~curve 1!, U0 /K50.7 ~curve 2!, and U0 /K50.8 ~curve 3!,
B050 ~a!, andB0a1520.00125B2 ~b!.
S~v!5
K1g2v0

2

p@~v22v0
2!21g2v2#

,

^z~ t !z~ t1t!&5
K1v0

2g2@A4v0
22g2cos~Av0

22g2/4 t!1g sin~Av0
22g2/4 t!#

2v0
2gA4v0

22g2
expS 2

gt

2 D . ~33!
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It follows that the variance of the random processz(t) is
equal toK1g/2 and the correlation time is inverse tog.

In the quasistationary approximation, which is valid f
sufficiently large correlation times of the processz(t), we
can use the approximate Fokker-Planck equation~19! and its
solution ~28! which should be averaged overz.

The stationary probability density of the variablez is
equal to@24#

p~z!5A 1

pK1g
expS 2

z2

K1g D . ~34!

It coincides with the stationary probability density for a s
called Ornstein-Uhlenbeck process@25# described by the
equation

ż1gz5gj1~ t !. ~35!

It should be noted that Eqs.~35! and~32! are equivalent only
with respect to the probability density, whereas they ha
radically different spectral densities and correlation fun
tions: the spectral density and correlation function of
processz(t) described by Eq.~37! are

S~v!5
K1

p~v2tc
211!

, ^z~ t !z~ t1t!&5
K1g

2
e2gt,

~36!

wheretc51/g is the correlation time.
Taking into account Eq.~32! we find

^ẋ&5^G~z!&L5LA 1

pK1gE2`

`

G~z!expS 2
z2

K1g Ddz.

~37!

It follows from Eq. ~34! that in the case of sufficiently sma
K1g and sufficiently largeK/U0, when

K1g!a1,2
2 ,

K2a1,2
2

U0
2

, ~38!

the probability densityp(z) declines rapidly with increasing
uzu. Therefore for calculatinĝG(z)& we can expandG(z) as
a power series inz. In this case we obtain the expressio
~29!. Ignoring the linear term we find

G~z!'
U0~a22a1!

K2~a11a2!sinh2~U0 /K !
F U0

2

K2sinh2~U0 /K !

1
U0

K tanh~U0 /K !
221m

a1a2exp~2U0 /K !

K sinh~U0 /K !

3S 2U0
2

K2sinh2~U0 /K !
1

U0

K tanh~U0 /K !
23D Gz2~ t !.

~39!

Substituting Eq.~39! into Eq. ~37! we have
e
-
e

^ẋ&'
U0

2~a22a1!

K2a1a2sinh2~U0 /K !
F U0

2

K2sinh2~U0 /K !

1
U0

K tanh~U0 /K !
221m

a1a2exp~2U0 /K !

K sinh~U0 /K !

3S 2U0
2

K2sinh2~U0 /K !
1

U0

K tanh~U0 /K !
23D GK1g

2
.

~40!

The dependencies of̂ẋ& on K1g calculated numerically
from the expression~37!, in view of Eq. ~28!, for a151.25,
a255 and different values ofK/U0 are shown in Fig. 7 for
m50 ~a! andma1a2 /U050.25~b!. It is seen from this figure
that for a fixed value ofK/U0 andm50 the value of̂ ẋ& first
increases asK1g increases and then slowly decreases
proaching zero asK1g→`. The peak of̂ ẋ& is located at
greater values ofK1g, the greaterK/U0 is. The inclusion of
particle mass results in a shift of the peak in the direction
smaller values ofK1g which is the larger the larger isK/U0.
From a certain value ofK/U0 onwards the values of̂ẋ&
become negative for anyK1g and the dependence of^ ẋ& on
K1g becomes monotonically descending.

The dependencies of̂ẋ& on K/U0 for a fixed value of
K1g, shown in Fig. 8, are of a somewhat different form

FIG. 7. The dependencies of^ẋ& on log10(K1g) for a151.25,
a255, K/U050.1 ~curve 1!, K/U050.5 ~curve 2!, K/U051 ~curve
3!, K/U052 ~curve 4!, m050 ~a!, andma1a2 /U050.25 ~b!.
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Even form50 ~a! they have a maximum at a certain value
K/U0Þ0 only for K1g nonexceeding a certain value
whereas for greaterK1g the dependencies become mon
tonically descending. The inclusion of particle mass@see Fig.
8~b!# has little or no effect on the character of these dep
dencies forK/U0 less than or of order 1. For greater valu
of K/U0 the values of̂ x& become negative and then, fo
K/U0→`, they also tend to zero.

The problem considered can also be solved approxima
in the other limiting case when the correlation time of t
random processz(t) is sufficiently small. This is precisely
the case which is mainly considered in Ref.@17# but using an
alternative way. The solution of this problem is the simpl
if the thermal noisej(t) is absent, the random forcez(t) is
described by Eq.~35!, andm50. In this case we can obtai
from Eqs. ~15!,~35! the following differential equation of
second order:

tcẍ1@11tcf 8~x!# ẋ1 f ~x!5j1~ t !, ~41!

wheretc51/g is the correlation time playing the role of
small parameter.

The approximate equation for the probability dens
w(x) corresponding to Eq.~41! is ~see Ref.@24#!

]w

]t
5

]

]xS f ~x!w1
K1

2

]

]x
$@12tcf 8~x!#w% D . ~42!

FIG. 8. The dependencies of^ẋ& on K/U0 for a151.25, a2

55, K1g50.2 ~curve 1!, K1g51 ~curve 2!, K1g52 ~curve 3!,
K1g510 ~curve 4!, m050 ~a!, andma1a2 /U050.25 ~b!.
-

-

ly

t

In the stationary case we obtain from here

2S f ~x!2tc

K1

2
f 9~x! Dw2

K1

2
@12tcf 8~x!#

dw

dx
5G,

~43!

whereG is the probability flux.
A solution of Eq.~43! with a precision of terms of orde

tc is

w~x!5expF2
2

K1
S E

0

x

f ~x8!dx81
tc

2
f 2~x! D 1tcf 8~x!G

3H C2
2G

K1
E

0

x

expF 2

K1
S E

0

x8
f ~y!dy

1
tc

2
f 2~x8! D dx8G J . ~44!

Using the periodicity and normalization conditions and a
suming that the functionf (x) is close to that is described b
Eq. ~16! we find

FIG. 9. ~a! The dependencies of^ẋ& on K1g for a151.25, a2

55, U051, g5100 ~curve 1!, g5150 ~curve 2!, and g5200

~curve 3!. ~b! The dependencies of̂ẋ& (g for 1!, Kg52001g
51000 ~curve 3!.



g

s
e-

om

c-
um
It

cor-
de

s-
tion

PRE 58 1333NOISE-INDUCED TRANSPORT OF BROWNIAN . . .
^ẋ&5a1a2U0FexpS 2
a1

2

K1g D 2expS 2
a2

2

K1g D G
3H 2K1Fa2expS 2

a1
2

K1g D 1a1expS 2
a2

2

K1g D G
3sinh2

U0

K1
1~a22a1!FK1expS 2

U0

K1
D sinh

U0

K1
2U0G

3FexpS 2
a1

2

K1g D 2expS 2
a2

2

K1g D G J 21

. ~45!

For a fixedg the value of̂ ẋ& first increases with increasin
K1g and then remains nearly constant@see Fig. 9~a!#. For a
fixed K1g the value of^ẋ& decreases monotonically asg
increases@Fig. 9~b!#.
ck

x

h

We note that the expression~45! and the dependencie
found by us differ qualitatively from the corresponding r
sults obtained in Ref.@17#.

In conclusion it should be noted that, as easily seen fr
Eq. ~45!, ^ẋ&→0 for tc→0, but it is nonzero for any finite
tc . Undeniably, this result is in contradiction with the se
ond law of thermodynamics because thermal equilibri
noise is not white but colored with small correlation time.
testifies that the ratchet model considered should be
rected much as was done by Stratonovich for the dio
model.
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