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Noise-induced transport of Brownian particles with consideration for their mass

P. S. Landa
Department of Physics, Lomonosov Moscow State University, 119899 Moscow, Russia
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The noise-induced transport of Brownian particles with regard to their mass is considered. The results of
approximate analytical calculations for the averaged particle flux in periodic ratchetlike potentials are pre-
sented. It is shown that with increase in mass the reversal of flux is possible. An analogy between noise-
induced transport and well known in mechanics vibrational transport is discUSsH163-651X98)10607-4

PACS numbsgs): 05.40:j, 87.10+e, 05.60+w, 82.80—d

INTRODUCTION As a rule, the consideration of noise-induced transport is
restricted to the so-called overdamped case when the motion
In recent years phenomena of noise-induced transport aff a Brownian particle is described by a first order differen-
Brownian particles has attracted the considerable interest dfal equation of the form
many scientists, for the most part in the context of different
biological and chemical problemsee, for example, Refs. x=—fF(X)+ Z(x,t) + &(1), (1)
[1-6]). A physical experiment demonstrating the possibility
of such transport in a ratchetlike potential field is described . - . . .
in Ref. [7]. wheref(x) is a periodic function ok possessing a certain

Systems in which noise-induced transport occurs are Oﬁeﬁsymmetry,g(x,t) IS a rgndgm_ process with zero mean
value, andé(t) is white noise imitating thermal fluctuations.

called stochastic ratchets in analogy to the mechanical devi . : .
“ratchet-and-paw!” described and considered by FeYnmaﬁFQSa%?ﬁsesg(x't) can be either given or described by other

[8]. Feynman showed that in the case of thermodynamma‘? It is usual to distinguish two types of ratchet devigds

equilibrium the ratchet on average is at rest as it must beé,20,2]]: (1) Z(x.1) is independent ok (fluctuating force

cause of the second law of thermodynamics. . . >
It should be noted that similar phgnomena were also dis‘:’md(z) ¢(x,t) depends o (fluctuating barriex. In its turn,

- . the latter can be also divided into two classds)
cussed prior to Feynman lecturg®-15]. In Refs.[11,17] it i : X
was shown that in the simplest electrical rectifier consisting %t = f(X)x(t) [4] and(b) {(x.t) is a random function of

of condenser and diode the condenser can be charged wit andx [21]'_ ) .
We restrict ourselves to the first type of ratchet devices,

out an external source, only at the sacrifice of thermal fluc- ke i il In additi h h
tuations. This paradoxical result cast some doubt on the fefUt take into account particle mass. In addition, we show that

sibility of the second thermodynamics law as applied to thet.hereI Is a certairr: a'?a'°9>|’| lt()etwegn noisi—inQUcled a_nd vi.bra—
phenomenon consider§ti4]. As far back as 1950, Brillouin Honal transport that is well known in mechanical engineering

[10] showed, considering diode as a nonlinear resistor, thzilzz]'
for the feasibility of the second thermodynamics law a shift
of the voltage-current characteristic of the nonlinear resistor || AN ELECTRICAL RECTIFIER AND VIBRATIONAL
must be taken into account. Stratonovidh] established, on TRANSPORT
a certain model of the diode, that such a shift does occur and ] ) -~ )
calculated it. With this shift the mean value of the voltage _ First of all let us consider an electrical rectifier shown in
drop across the condenser and the mean current in the circditd- 1. Taking into account the shift of the diode current-
vanish. voltage characteristic we can write the following equation for
We note that in works concerning noise-induced transporth€ voltage drop across the diotte
authors allege that a necessary condition for existence of a
directional motion of Brownian particles is the presence of a V=F(V—Vg)—VIT+&(t), 2
spatioperiodic potential with a certain asymmetry. According
to them the periodicity is required to permanently extract . . .
work from apglied fluc%/uationg, thus trar?sforming n>(/)ise intowhereC.F(V_VO) IS the current flowmg. through thg diode,
directed motion. The examples considered in the first sectioﬁ_RQ is the relaxation time, ang(t) is white noise of
demonstrate that this condition is not necessary. mtensny_K. - :
In the last few years much attention has been concentrated For simplicity we sefF(v) in the form
on the problem associated with the separation of particles of
different mass or size. In this connection studies of different J_
models giving flux reversals as the system parameters R C &)
change[16—19 are very important. Below it is shown that —|_
under certain conditions flux reversal is possible with in-
creasing particle mass. FIG. 1. Schematic image of an electrical rectifier.
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—av forv>0, Let us now consider the simplest example of vibrational
transport and show that it is akin to electron transport in an
electrical rectifier. Let a body of mass lies on a horizontal

The value ofV, can be calculated by using the techniqueplane vibrating in the direction of an axis We assume that

F(U):{

—av foruv<O.

suggested by Stratonovi¢@3]. In so doing we find a force of dry friction between the body and plane has dif-
ferent values fox>0 andx<0. This is possible if the sur-
Vo \/KoT(1+alT)(1+ as7) (a;—ay)7 3 face of the plane is rough. Then we can write the following
o T Vita;r+V1+a,r equation for the body motion:

whereKj is the intensity of thermal fluctuations. y=—f(y)+FE(), (6)
Solving the corresponding Fokker-Planck equation we ob-

tain the following expression for the stationary probability wherey=x, F(t) is proportional to the inertial force due to

density: vibration of the plane, and
(1+a;7)(V—Vy)?
GX%_ ! K7 0 for V>V0 al for y>o ( )
- f(y)= 7
V)=C _
w(V) F{ (14 a,7)(V—V,)? a, fory<o,
exd — r| forv<Vy,
K 4 a, , are the friction factors.
(4) In mechanics it is usual to consider harmonically vibrat-
where ing plane, i.e.F(t)=B sin wt. In this case the availability or
2J(1+a;7)(1+a,7) lack of transport are determined by the valueBoaind the
= difference betweem,; anda,. If B<mina, , then the body,
mK7(J1+aim+V1+a;7) being fort=0 at rest, remains immobile for &ll In the case
is the normalization constant. qf a,<B<a, the body moves towards the right during the
If the intensity of noise(t) is greater than or equal to, M€ lapse betweent;+nT and t,+nT, where t;
then =(1l/lw)arcsing,/B), t, is determined by the equation
(B/w)(coswt;—coswty)=a4(t,—t;), n is an integer andr
) \/: \/_ \/_) \/(1+ a;7)(1+a,7) =2/ w; during the remainder of time the body is at rest. It
V = _( K_ KO (az_al)'T . H H _: T
. \/l+a17+ \/1+a27- is evident thaty=1/T [yy(t) dt>0. So, the body moves on

5) average, though no constant forces act upon it; in the process
the motion occurs in the direction of less resistance offered

It follows that(V) is equal to zero foK=K, and not equal by the friction force. In the case of the most interest, that
to zero forkK>K. The sign of(V) is determined by the sign B>maxa, ,, the body moves towards both the right and the
of the differencea,—a;. So, as would be expected, f&r left, but in the average it moves in the direction of the less
>K, anda; #a, we obtain the rectification of fluctuations, resistance as before. Let us consider this case in more detail
i.e., directed motion of electrons caused by noise. It is eviin the time interval Gst<T. A solution of Eq.(6), in view of
dent that this phenomenon is similar to a stochastic ratchetEq. (7), is

( B
y(0)+a,t+ 5(1—c03wt) for O<t<t,

B
y(t)=4 —ay(t—ty)+ Z(cosfutl—cosm) fort;<t<t, 8

B
ay,(t—t,)+ Z(COSth—COSwt) for t,<t<T,
\

wherey(0), t;, andt, are determined by the following equa- B
tions: a)(T—t,)+ Z(COSwtg—l)—y(O)ZO.

B An example of the plot of(t) is given in Fig. 2.
y(0)+agty + —(1-coswty) =0, It follows from Egs.(8),(9) that

-2

_ 1 , maa; [ ma, mway
B =—\/B°— T2 | ST oS ——
_al(tz_t1)+ Z(COSwtl—COSth)ZO, (9) @ (al aZ) T as T az

(10
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FIG. 2. The plot ofy(t) for a;=5.024,a,=27, B/w=2, and
w=27 for values of parameters;=0.0971137,t,=0.65267,
y(0)= —0-970434?’“0-2461 Bo/w~1.4175. FIG. 3. An example of the sawtooth potential.
It is easily seen that this expression is valid Bse By, where ~ €ffect is of threshold character, whereas in the case of ran-
dom vibration the transport can occur for the fluctuation in-

Tralaz( o ma, |\ tensity as small as is wished.
= sin
0 a,+a,l T a;t+a,

o IIl. TRANSPORT OF A MASSIVE BROWNIAN PARTICLE
We can see from Eq.10) that, as one would expecy, is IN A VISCOUS MEDIUM WITH SAWTOOTH
equal to zero form;=a,, positive fora,<a,, and negative POTENTIAL UNDER THE ACTION OF REGULAR
AND RANDOM FORCES

for a;>as,.
Let us consider further the case of random vibration. We . . . L
Let us consider the motion of a Brownian particle in a

putF(t) = &(t), whereé(t) is sufficiently wide-band noise of . _ i . o
intensityK with zero mean value. In this case we can use the/!SCOUS medium described by the following equation:
Fokker-Planck equation associated with the Langevin equa- .
tion (6). The stationary solution of this equation satisfying pX+x+f(x)= (1) +&(1), (15
the condition for the probability flux to be zero is
where u=m/B, m is the particle massp is the viscous
friction factor, f(x) is a periodic function ofx, {(t) is a

2y
WW)ZCGXF{RJO fy")dy ) (1) function of time which can be both regular and random, and
&(t) is white noise of intensitK imitating thermal fluctua-

where the constar€ is determined from the normalization tions. For definiteness, we set
a, fornL<x<nL+x,

condition. It is
f =
(x) {—az for nL—x,<x<nL,

” 2 (v -1
C= f ex —f f(yH)dy' |dy| . (12
— K 0
wheren=0,*+1,%£2,...,L=X;+X, is the period of the

Using the expressiond 1),(12) we can find the mean value fynction f(x). We note that such a form of the functiéx)
corresponds to the sawtooth potentiflx) shown in Fig. 3.

(16)

of y:
. 2 ry The functionf (x) can be expanded into the Fourier series
<<,o(y)>:f yexp(gf f(y’)dy’) .
o 0 (=S 1 _27nx _27n(X—Xy)
. 5y _1 (X)_n=1ﬁ (a;+ay)sin 1 —aysin 1
xdyf exp(Rf f(yH)dy' | dy| . (13
o 0 _2an(x+Xp)
—apsin—— —|. (17)

If f(y) is described by the expressi¢n) then
We note that for any finite number of the series teffifyg is

K
V)= 555 (B2—a). (14)  a differentiable function. The shape of the functifx) and
172 the potentiall(x) in the approximation of four terms of the

So, in this case we obtain the same result as for harmonigeries(17) is shown in Fig. 4. _
vibration: fora, =a, the body is on average at rest, whereas The problem is to calculate the particle velocikyaver-

for a; # a, the body moves on average in the direction of theaged over both statistical ensemble and time.
less resistance. This result is similar to the rectification of This problem can be solved analytically only in the case
fluctuations. However, there is a dissimilarity from the casethat x is sufficiently small. As will be seen from the subse-

of harmonic vibration: in the case of harmonic vibration thequent results, the condition of smallness is
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FIG. 4. The shape of the functidifx) and the potentidl (x) in
the approximation of four terms of the seri@s).

a;ap
K

u <1. (18

At the condition (18) we can use the approximate one-
dimensional Fokker-Planck equation for the probability den-

sity of the variablex derived by Stratonovich24]:

W d
gt ox

K ¢
T2

[1+Mf’(X)]<[f(X)— Z(t) Iw(x,t)

(19

wheref’ (x)=df(x)/dx. Although the ternf’(x) enters into
Eq.(19), it disappears in the expression fo(x, {); therefore
we can takd (x) in the form of Eq.(16). For =0 Eq.(19)
is the exact Fokker-Planck equation corresponding to
Langevin equatiori15).

Becausef (x) is a periodic function ok, the probability
densityw(x,{) is also a periodic function ok. The latter
enables Eq(19) to be solved only on the interval from
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where the symbol ) denotes averaging over ensemble,
=x;+X,=U(a;+ay)/a;a, is the period of the function
f(x).

First of all let us note that Eq19) is equivalent to the
following Langevin equatioh24]:

. K
X=[1+pt IO = F) ]+ w5 (%)
+V[1+uf () JE(). (22

Averaging Eq.(22) with regard to the correlation betwegn
and £(t) [24], we obtain

(%)= f

K
+u 5 f”(x))w(x,t)dx.

[1+uf )LD —F(X)]

(23

Taking into account Eq20), we can rewrite the integrand in
(29) as

w(Xx,t)

K
[1+pf OO = F0) ]+ u 5 (%)

K d
=G(t)+5 X {[1+ wf"(X)Jw(x,t)}.

Substituting this expression {23) and using the periodicity
conditions for the functionsv(x,t) and f(x) we obtain the
formula (21). Averaging furthen21) over time we find

(})=G(1)L, (24)

th9\/here

G= lim

T—oo

fOTG(t)dt.

—X, to x4. If the function{(t) varies sufficiently slowly, we Thus, the transport of particles is determined by the mean
can use so-called quasistationary approximation for solvingalue of the probability fluxG(t).

Eq. (19), i.e., neglect the termw/dt. In this approximation
we obtain from Eq(19) the following equation fom(x,{):

K ow
5 ==/, (20

G()=—[1+uf ()| [F0 -0 Iwt =

whereG(t) is the probability flux in the direction of the axis

X in the instantt.

Let us show that the particle velocikyaveraged over both
statistical ensembles is proportional to the probability flux

G(1):

A solution of EQ.(20) is

WXt =24 G(th(X) exp(_ 2[U(XK)—§X])
C(t)—ZGK(t) X(1+ o )[f}((x )—g])

2[U(x')—x']

K (25

ex;{ )dX’},

whereU(x) = [3f(x") dx’ is the potential.

(X)=G(t)L, (21 For f(x) described by the expressi¢h6) we obtain
|
G(t) G(t) G(tHay 2(&—apx
. —a T —a +2u K exp(T for 0<x<<x 2
w(x,t)=
' G(t) G(t) G(t)a; 2({+ap)x B
Tray C(t)— [tay K exp{ —x for —x,<x<0,

whereC(t) is an arbitrary function of.
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From the periodicity condition of the function(x,t) we find the relationship betwedd(t) and G(t):

C(1)] ex Ka,| A7 Kap ||~ —a, K | Ka, ) \t7a, K
_2Uo§ B a;+a, ZUO)}
Xex"( Ka, | ({-ay(i+ay) ex‘< i @0

Taking into account Eq(27), from the normalization condition we determife

. p(zuog) ep{ 2U,¢ +K(a1+a2)2e’2U0’K[e p(2uo) ep( 2Uol
X —exp — X —exp —
Kay Kag 2(;-apActay?l | K Kay

1 N 1
ai({—ay) axyitay)

G(t)=U,

y p(zuo) p( 2Uy¢ ata, | p(zuog . p( 2Uy¢ (ot
exp — | —ex a,exp ——| +aexp — —(a;+a

K Ka; || *(t—ap)(l+ap)| "1 Kay | 2 Kay | (21722

2Uo( & ¢ 2Uo{ 2Uy¢
Xex[{?(a_l_a_z_l }_{ex’]( Ka, | P~ Ka, g (28)
|

It follows that in the case thaf(t)=0 the probability flux is Ué(az—al) Ug
absent, i.e., the transport is impossible. (x)~ KZa,8,5in7(UgIK) | K2Sin(Uo7K)

Uo Ud(a,—ag)exp —Ug/K)
o2 +u 3=
K tanHU,/K) K3sint?(Uo/K)

A. Transport of a Brownian particle under the action
of small periodic force

In this item we consider the case whei(t)=B x( 2U5 N Uo _3”3_2 (31
+B sinwt with By, B<a, , Kaj »/Uy. ExpandingG(¢) in K2sintf(Uy/K) ~ K tanqUq/K) 2
powers of{ we obtain
G()~ Uoasay{ a—a It is easy to verify that in the absence of fluctuations the
K?(a,+a,)sinit(Uy/K) a;a, transport of the particle cannot occur, as for the case of a
2 constant force.
><< Uo " Uo 5 §(t)} As follows from Eq.(31), for u=0, By=0 the particle
K2sintf(Uy/K) ~ Ktanh(Uqy/K) can move on average only in the direction of the slower rate
2 9 of the potential change. However, far~= 0 and/orBy# 0 the
tu LioalaZqu._UolK)g a3 direction of motion can change, i.e., the flux reversal can
K3(a;+a,)sintb(Uy/K) a,a,

occur. The dependencies of%/B? on Uy /K for u=0,
2U3 Uo naja,/Ug=0.15, uaja,/Uqy=0.3 are shown in Fig. 5 both
X(Kzsinhz(UO/K) + K tanh(U,/K) —3> é(t)}- for Bo=0 (a) and forBya,; /B?>=—0.00125(b). We see that
the flux reversal occurs at a moderately small value gfK
(29 (Uy/K less than or of order)1
It is evident that the flux reversal can be used for the
separation of particles of different masses. Examples of the

If B=0,By#0, i.e., in addition tdf(x) a constant force acts ) .,
upon the particle, then dependencies ofx)/B- on paja,/U, for Uy/K=0.6,
Uy/K=0.7,U,/K=0.8 are illustrated in Fig. 6 foBy=0
(@) and Bya; /B?=—0.00125(b). We see that in the pres-
- Ué Uéalazexp(—uo IK) ence of a constant force the separation of particles can be
(X)=~ S (UTK tu g UK By, more effective. It should be noted that, as with noise-induced
sinft(Uo/Ky) sinfr(Uo/K) 30 transport, the noise-induced separation of particles of differ-
(30 ent size orland mass is akin to vibrational separatifi?].

The results obtained can be explained in the following
manner. The noise-induced transport occurs if fluctuational
transitions through the potential barrier are more frequent in
: one direction than in another. Because the probability of the
(x)—0, i.e., the transport of the particle is impossiple. transition through a certain potential barrier depends only on

In another specific case, wh&y=0, B#0, we obtain the height of this barrier and intensity of fluctuations, the

i.e., the particle moves in the direction of the constant force
(We note that in the absence of fluctuations, wiker 0,
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FIG. 5. The dependencies of(i?.)/B2 onUy/K for L=1, a;
=1.25, a,=5, =0 (curve 1, wma;a,/Uy=0.15 (curve 2,
naga,/Ug=0.3(curve 3, B,=0 (a), andBya; = —0.0012B2 (b).

FIG. 6. The dependencies ¢k)/B? on paja,/U, for Uy/K

=0.6 (curve 1, U,/K=0.7 (curve 2, andU,/K=0.8 (curve 3,
Bo=0 (a), andBya; = —0.0012B2 (b).

éhe random force they found nonzero current depending on

transport is impossible in the absence of an additional forc he <h fthe f | densitv. The inclusi f
£(t). This force results in the fact that the probabilities of thetN€ shape of the force spectral density. The inclusion of par-

" - - - .“ticle mass was performed by Bartussekneigi, Lindner,
g;\fr;srgﬁndfggtlijg:&the potential barrier become different Inand Schimansky-Geigf9], but the problem was tackled by

numerically solving either initial stochastic equations or the
corresponding Fokker-Planck equation.
First of all let us consider the case when the motion of a
Brownian particle is described by E(L5), where the corre-
The problem of fluctuational transport of an overdampedated random forcé€(t) is described by the equation
Brownian particle in a viscous medium induced by thermal
noise and a correlated random force that is a Markov process
was studied by Doering, Horsthemke, and Riorfi2@] and
Bier [4]. However, concrete results were obtained by them
only for dichotomous and so-called “kangaroo” processes. We assume thag,(t) is white noise with zero mean value
A similar problem was also studied by Millonas and Dyk- and intensity equal t&K;. We assume thaf,(t) is noncor-
man[17] but for the case where thermal noise is absent. Irrelated with&(t). It is easily shown that the spectral density
the approximation of sufficiently small correlation time of and correlation function of the proceégt) are

B. Transport of a Brownian particle under the action
of a correlated random force

{+ YL+ wil=woyé(1). (32

_ K1y wh
[ (w?— wg)z-l- Y’ w?]’

S(w)

(33

K 2,2 4 2_.2 2_ 2/4 ; _ 2/4
LK) = 1057 V4w~ Ycos Jwi— 714 )+ y sin(w3— 714 7)] exﬁ{_y_r)'

20iy\Awi— 2
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It follows that the variance of the random proce%s) is (a)
equal toK,vy/2 and the correlation time is inverse 40 0.80
In the quasistationary approximation, which is valid for
sufficiently large correlation times of the procesd), we
can use the approximate Fokker-Planck equati@ and its 0.60
solution (28) which should be averaged ovér
The stationary probability density of the variabfeis A

equal to[24] <</ 0.40
1 G )
= exg — —|. 34 020
PO= Vs p( < (34
It coincides with the stationary probability density for a so- 0-00_2 0 5 4
called Ornstein-Uhlenbeck proce$25] described by the
equation (b)
1.0
[+ yl=v&(). (35)
0.5 | !
It should be noted that Eq&35) and(32) are equivalent only 2

with respect to the probability density, whereas they have
radically different spectral densities and correlation func- 0.0
tions: the spectral density and correlation function of the V
process/(t) described by Eq(37) are

=05 r
(@)= ——b (Lt D)= e
@ ’77((1)27'C+ 1)’ T 2 ' -1.0 s s
(36) -2 2 4

0
10g,,(K,Y)
where .= 1/y is the correlation time.
Taking into account Eq(32) we find FIG. 7. The dependencies ¢f) on logo(K;y) for a;=1.25,
a,=5,K/Uy=0.1(curve ), K/Uy=0.5(curve 3, K/Uy=1 (curve

_ \/T - 52 3), K/IUy=2 (curve 9, uy=0 (a), andua,a,/Uy=0.25(b).
(x)=(G()L=L WK—NJ_OCG(Z)GXP(— K—ﬂ)dg-

. U3(a,—a u?
(37) <X>% , O( .2 l) — 0
K?a,a,sinit(Uy/K) | K2sintf(Uq/K)
It follows from Eq.(34) that in the case of sufficiently small Uo aa,exp(—Ugy/K)
K17y and sufficiently large/U,, when +m —-2+u K Sinf(Ug/K)
K2a? 2U2 U K.y
a2 12 0 0 o |RY
Kar<aiz =gz (38) X\ KZsintZ (U, /K) K tani(U,/K) ” 2
(40)

the probability densityp(¢) declines rapidly with increasing . i _
|¢|. Therefore for calculatingG(¢)) we can expan@({) as  The dependencies ofx) on K,y calculated numerically
a power series irf. In this case we obtain the expression from the expressio37), in view of Eq.(28), for a;=1.25,

(29). Ignoring the linear term we find a,=>5 and different values dk/Ug are shown in Fig. 7 for
p=0 (a) andpaia, /Uy=0.25(b). It is seen from this figure
Ug(a,—ay) u3 that for a fixed value oK/U, and =0 the value of ) first
G~ K2(a;+ ay)sinfA(Uy/K) | KZsintP(Ug/K) increases a¥,y increases and then sloyvly decreases ap-
proaching zero a&,y—. The peak of(x) is located at
N Uop o4 ajazexp(—Ug/K) greater values oKy, the greateK/U, is. The inclusion of
K tanh(Uy/K) #K sinh(Uq/K) particle mass results in a shift of the peak in the direction of
) smaller values oKy which is the larger the larger /U .
% 2Ug 4 Yo —3/ |21 From a certain value oK/U, onwards the values ofx)
K?sin?(Uy/K) = K tanHUy/K) ' : -
become negative for arg,y and the dependence &f) on

(39 K1y becomes monotonically descending.

The dependencies df) on K/U, for a fixed value of
Substituting Eq(39) into Eq. (37) we have K1y, shown in Fig. 8, are of a somewhat different form.
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Even foru=0 (a) they have a maximum at a certain value of ~ 000 (Curve 3.

K/Ug#0 only for K;y nonexceeding a certain value,
whereas for greateK,vy the dependencies become mono- . .
tonically descending. The inclusion of particle msme Fig. !N the stationary case we obtain from here

8(b)] has little or no effect on the character of these depen-

dencies forK/U less than or of order 1. For greater values K K dw
of K/Uq the values of(x) become negative and then, for —| f(x)— 7, 71f"(x) wW— 71[1_ch'(x)]d_:c;,
K/Uy—, they also tend to zero. X 43

The problem considered can also be solved approximately
in the other limiting case when the correlation time of the
random procesg(t) is sufficiently small. This is precisely whereG is the probability flux.
the case which is mainly considered in R@f7] but using an A solution of Eq.(43) with a precision of terms of order
alternative way. The solution of this problem is the simplest;_ is
if the thermal noise(t) is absent, the random forggt) is
described by Eq35), andu=0. In this case we can obtain

from Egs. (15),(35) the following differential equation of o2, Te ,
second order: W(X)=ex K, 01‘(x )dx' + 5 fo(x) | + 7' (x)
- , : 2G 2 '
L OO =E(0, (@D xfo- 22 Cedic| [ 1oy
KiJo " Kil Jo
where 7.=1/y is the correlation time playing the role of a r
small parameter. + —°f2(x’)>dx’ ] (44)
The approximate equation for the probability density 2

w(x) corresponding to Eq41) is (see Ref[24])

Using the periodicity and normalization conditions and as-

suming that the functiof(x) is close to that is described by

ow ,
1= 7 C0Iw} ). (42) Eq. (16) we find

at

Ky o

0
=% f(x)w+ >
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) ai ag We note that the expressidd5) and the dependencies
(xX)=a,a,U, exp( - = —exp( - = found by us differ qualitatively from the corresponding re-
Ky Kyy sults obtained in Ref17].
ai a§ In conc!usion it should be noted that, as easily seen from
X[ZKl azex;{ - K_ly +a1ex;{ - K_ly Eq. (45), (x)—0 for 7.—0, but it is nonzero for any finite

7. . Undeniably, this result is in contradiction with the sec-
Uo) . Ug ond law of thermodynamics because thermal equilibrium

Klexp( — —)smhK—— Uo} noise is not white but colored with small correlation time. It
1 testifies that the ratchet model considered should be cor-

U
X sinf—2 + (a,—a,)
Ky

F{ ai ) ;{ ag ) -1 rected much as was done by Stratonovich for the diode
X|exp — o—|—exp — o— (45  model.

K1y K1y }
For a fixedy the value of(x) first increases with increasing ACKNOWLEDGMENTS
K1y and then remains nearly constdsee Fig. %a)]. For a | am grateful to L. Schimansky-Geier for stimulating dis-
fixed K,y the value of(x) decreases monotonically as  cussions and A. Zaikin for great assistance with preparation
increasesgFig. Ab)]. of the figures.
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